Vol. 27/2018 Nr 55
okładka czasopisma Child Neurology
powiększenie okładki
Informacje o Pismie

NEUROLOGIA DZIECIĘCA

Pismo Polskiego Towarzystwa Neurologów Dziecięcych

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Półrocznik

RANKING
Ministerstwo Nauki i Szkolnictwa Wyższego: 11
Index Copernicus: 80,00



Powrót

Molekularne podłoże i terapia rdzeniowego zaniku mięśni


Molecular basis and therapy of spinal muscular atrophy




1Katedra i Zakład Biologii Komórki, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu; ul. Rokietnicka 5D, Poznań
2 Katedra i Klinika Neurologii Wieku Rozwojowego, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu; ul. Przybyszewskiego 49, Poznań

DOI: 10.20966/chn.2018.55.429
Neurol Dziec 2018; 27, 55: 39-46
Pełen tekst artykułu PDF Molekularne podłoże i terapia rdzeniowego zaniku mięśni



STRESZCZENIE
Rdzeniowy zanik mięśni, SMA (spinal muscular atrophy) to genetyczna choroba powodowana mutacją genu SMN1 i w konsekwencji niedoborem białka SMN (survival of motor neuron), które odgrywa kluczową rolę w regulacji ekspresji genów w motoneuronach. Jego brak prowadzi do zwyrodnienia i apoptozy komórek rogów przednich rdzenia kręgowego i w konsekwencji zaniku mięśni. Gen SMN w ludzkim genomie występuje w co najmniej dwóch kopiach: SMN1 i SMN2. Oba geny kodują identyczne białko, jednak transkrypty SMN1 mają pełną długość (FL-SMN), a 90% transkryptów SMN2 jest pozbawiona eksonu 7 (SMN-Δ7), co powoduje niefunkcjonalność białka. FL-SMN jest niezbędne do prawidłowego przeprowadzenia procesu splicingu. Niskie stężenie białka SMN upośledza także dynamikę szkieletu aktynowego, co skutkuje zahamowaniem wzrostu aksonów motoneuronów. Dotychczasowe leczenie SMA opierało się głównie na działaniach neuroprotekcyjnych i wzmacniających siłę mięśni. Obecnie, dzięki wykorzystaniu antysensowych nukleotydów (ASO), możliwa jest terapia modulująca przebieg splicingu, która pozwala na włączenie eksonu 7 do transkryptu SMN2. Takim ASO jest nusinersen, który został zatwierdzony do użytku w USA i Europie; jest on w pełni refundowany w Polsce. Terapeutyk jest przeznaczony do leczenia pacjentów ze wszystkimi typami SMA w każdym wieku. Inną strategią leczenia jest terapia genowa pod nazwą onasemnogene abeparvovec (AVXS-101), polegająca na wprowadzeniu do organizmu pacjenta prawidłowej kopii genu SMN1. Nośnikiem genu terapeutycznego, wnikającego jedynie do komórek układu nerwowego, jest wektor wirusowy AAV. Lek ten został zatwierdzony przez FDA w leczeniu SMA pacjentów poniżej 2. roku życia.

Słowa kluczowe: rdzeniowy zanik mięśni, gen SMN, białko SMN, antysensowe oligonukleotydy, nusinersen, terapia genowa, AVXS-101


ABSTRACT
Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the SMN1 gene and, consequently, a deficiency of the SMN (survival of motor neuron) protein, which plays a key role in regulating gene expression in motoneurons. Its absence leads to degeneration and apoptosis of the anterior horn cells of the spinal cord and, as a consequence, to muscular atrophy. In the human genome the SMN gene is found in at least two copies: SMN1 and SMN2. Both genes encode the same protein, however, SMN1 transcripts are full-length (FL-SMN) and 90% of SMN2 transcripts are deprived of exon 7 (SMN-Δ7), which causes the protein to be non-functional. FL-SMN is necessary for proper splicing process. Low concentration of the SMN protein also impairs the dynamics of the actin skeleton, which results in inhibition of motoneuron axon growth. Hitherto SMA treatment was based mainly on neuroprotective and muscle strength enhancing approaches. Currently, thanks to the use of antisense nucleotides (ASO), it is possible to modulate the splicing process of SMN2, which allows the incorporation of exon 7 into the SMN2 transcripts. Nusinersen is an ASO that has been approved for clinical use in USA and Europe; it is fully refunded in Poland. The therapy is intended for the treatment of patients with all types of SMA at all ages. Another treatment strategy is the gene therapy called onasemnogene abeparvovec (AVXS-101) which allows introducing the correct copy of the SMN1 gene into the patient’s body. The carrier of the therapeutic gene that enters only the cells of the nervous system is an AAV viral vector. This drug has been approved by the FDA for the treatment of SMA in patients under 2 years of age.

Key words: spinal muscular atrophy, SMN gene, SMN protein, antisense oligonucleotides Spinraza, gene therapy, Zolgensma


PIŚMIENNICTWO
[1] 
Finkel R.S., McDermott M.P., Kaufmann P., et al.: Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 2014; 83: 810–817.
[2] 
Munsat T.L., Davies K.E.: International SMA Consortium Meeting (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 1992; 2: 423–428.
[3] 
Russman B.S.: Spinal muscular atrophy: Clinical classification and disease heterogeneity. J Child Neurol 2007; 22: 946–951.
[4] 
Wang C.H., Finkel R.S., Bertini E.S., et al.: Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007; 22: 1027–1049.
[5] 
Lefebvre S., Bürglen L., Reboullet S., et al.: Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155–165.
[6] 
Verhaart I.E.C., Robertson A., Wilson I.J., et al.: Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy - A literature review. Orphanet J Rare Dis 2017; 12.
[7] 
Sugarman E.A., Nagan N., Zhu H., et al.: Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: Clinical laboratory analysis of >72 400 specimens. Eur Hum Genet 2012; 20: 27–32.
[8] 
Hahnen E., Forkert R., Marke C., et al.: Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: Evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet 1995; 4: 1927–1933.
[9] 
Feldkötter M., Schwarzer V., Wirth R., et al.: Quantitative analyses of SMN1 and SMN2 based on real-time lightcycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358–368.
[10] 
Fujii H., Marsh C., Cairns P., et al.: Genetic divergence in the clonal evolution of breast cancer. Cancer Res 1996; 56: 1493–1497.
[11] 
Lorson C.L., Hahnen E., Androphy E.J., et al.: A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci 1999; 96: 6307–6311.
[12] 
Burnett B.G., Muñoz E., Tandon A., et al.: Regulation of SMN protein stability. Mol Cell Biol 2009; 29: 1107–1115.
[13] 
Gubitz A., Feng W., Dreyfuss G.: The SMN complex. Exp Cell Res 2004; 296: 51–56.
[14] 
Calucho M., Bernal S., Alías L., et al.: Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord 2018; 28: 208–215.
[15] 
Bernal S., Also-Rallo E., Martínez-Hernández R., et al.: Plastin 3 expres-sion in discordant spinal muscular atrophy (SMA) siblings. Neuromuscul Disord 2011; 21: 413–419.
[16] 
Burghes A.H.: When is a deletion not a deletion? When it is converted. Am. J. Hum Genet 1997; 61: 9–15.
[17] 
Beattie C.E., Kolb S.J.: Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res 2018; 1693: 92–97.
[18] 
Cartegni L., Krainer A.R.: Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002; 30: 377–384.
[19] 
Bebee T.W., Gladman J.T., Chandler D.S.: Splicing of the Survival Motor Neuron genes and implications for treatment of SMA. Front Biosci 2010; 15: 1191–1204.
[20] 
Seo J., Singh N.N., Ottesen E.W., et al.: Oxidative stress triggers body-wide skipping of multiple exons of the spinal muscular atrophy gene. PLoS One 2016; 11(4): e0154390.
[21] 
Singh N.N., Seo J., Rahn S.J., et al.: A Multi-Exon-Skipping Detection Assay Reveals Surprising Diversity of Splice Isoforms of Spinal Muscular Atrophy Genes. PLoS One 2012; 7(11): e49595.
[22] 
Rochette C., Gilbert N., Simard L.: SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens. Hum Genet 2001; 108: 255–266.
[23] 
Schrank B., Gotz R., Gunnersen J.M., et al.: Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci 1997; 94: 9920–9925.
[24] 
Paushkin S., Charroux B., Abel L., et al.: The Survival Motor Neuron Protein of Schizosacharomyces pombe. J Biol Chem 2000; 275: 23841–23846.
[25] 
Miguel-Aliaga I., Culetto E., Walker D.S., et al.: The Caenorhabditis Elegans Orthologue of the Human Gene Responsible for Spinal Muscular Atrophy Is a Maternal Product Critical for Germline Maturation and Embryonic Viability. Hum Mol Genet 1999; 8: 2133–2143.
[26] 
Battaglia G., Princivalle A., Forti F., et al.: Expression of the SMN Gene, the Spinal Muscular Atrophy Determining Gene, in the Mammalian Central Nervous System. Hum Mol Genet 1997; 6: 1961–1971.
[27] 
Coovert D., Le T.T., McAndrew P.E., et al.: The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 1997; 6: 1205–1214.
[28] 
Lorson C.L., Strasswimmer J., Yao J.M., et al.: SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 1998; 19: 63–66.
[29] 
Gray K.M., Kaifer K.A., Baillat D., et al.: Self-oligomerization regulates stability of survival motor neuron protein isoforms by sequestering an SCF Slmb degron. Mol Biol Cell 2018; 29: 96–110.
[30] 
Burghes A.H.M., Beattie C.E.: Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10: 597–609.
[31] 
Han K.J., Foster D., Harhaj E.W., et al.: Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25: 1392–1405.
[32] 
Lafarga V., Tapia O., Sharma S., et al.: CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN. Cell Mol Life Sci 2018; 75: 527–546.
[33] 
Ogg S.C., Lamond A.I.: Cajal bodies and coilin--moving towards function. J Cell Biol 2002; 159: 17–21.
[34] 
Cioce M., Lamond A.I.: Cajal Bodies: A Long History of Discovery. Annu. Rev Cell Dev Biol 2005; 21: 105–131.
[35] 
Raker V.A., Hartmuth K., Kastner B., et al.: Spliceosomal U snRNP core assembly: Sm proteins assemble onto an Sm site RNA nonanucleotide in a specific and thermodynamically stable manner. Mol Cell Biol 1999; 19: 6554–6565.
[36] 
Li D.K., Tisdale S., Lotti F., et al.: SMN control of RNP assembly: From post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 2014; 32: 22–29.
[37] 
Pellizzoni L., Yong J., Dreyfuss G.: Essential Role for the SMN Complex in the Specificity of snRNP Assembly. Science 2002; 298: 1775–1779.
[38] 
Blais A., Tsikitis M., Acosta-Alvear D., et al.: An initial blueprint for myogenic differentiation. Genes Dev 2005; 19: 553–569.
[39] 
Cam H., Balciunaite E., Blais A., et al.: A Common Set of Gene Regulatory Networks Links Metabolism and Growth Inhibition. Mol Cell 2004; 16: 399–411.
[40] 
Di Penta A., Mercaldo V., Florenzano F., et al.: Dendritic LSm1/CBP80-mRNPs mark the early steps of transport commitment and translational control. J Cell Biol 2009; 184: 423–435.
[41] 
Li H., Custer S.K., Gilson T., et al.: α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. Hum Mol Genet 2015; 24: 7295–7307.
[42] 
Briese M., Saal-Bauernschubert L., Ji C., et al.: hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons. Proc Natl Acad Sci 2018; 115: 2859–2868.
[43] 
Rossoll W., Kröning A.K., Ohndorf U.M., et al.: Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 2002; 11: 93–105.
[44] 
Mourelatos Z., Abel L., Yong J., et al.: SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 2001; 20: 5443–5452.
[45] 
Rossoll W., Jablonka S., Andreassi C., et al.: Smn, the spinal muscular atrophy–determining gene product, modulates axon growth and localization of β-actin mRNA in growth cones of motoneurons. J Cell Biol 2003; 163: 801–812.
[46] 
Zhang H.L., Pan F., Hong D., et al.: Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 2003; 23: 6627–6637.
[47] 
McWhorter M.L., Monani U.R., Burghes A.H.M., et al.: Knockdown of the survival motor neuron (Smn) protein in zebrafish causes defects in motor axon outgrowth and pathfinding. J Cell Biol 2003; 162: 919–932.
[48] 
Lambrechts A., Braun A., Jonckheere V., et al.: Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 2000; 20: 8209–8219.
[49] 
Sharma A., Lambrechts A., Hao L. thi, et al.: A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells. Exp. Cell Res., 2005; 309: 185–197.
[50] 
Nölle A., Zeug A., van Bergeijk J., et al.: The spinal muscular atrophy disease protein SMN is linked to the rho-kinase pathway via profilin. Hum Mol Genet 2011; 20: 4865–4878.
[51] 
Bowerman M., Shafey D., Kothary R.: Smn Depletion Alters Profilin II Expression and Leads to Upregulation of the RhoA/ROCK Pathway and Defects in Neuronal Integrity. J Mol Neurosci 2007; 32: 120–131.
[52] 
Martinez T.L., Kong L., Wang X., et al.: Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy. J Neurosci 2012; 32: 8703–8715.
[53] 
Tsuiji H., Iguchi Y., Furuya A., et al.: Spliceosome integrity is defective in the motor neuron diseases ALS and SMA. EMBO Mol Med 2013; 5: 221–234.
[54] 
Eggert C., Chari A., Laggerbauer B., et al.: Spinal muscular atrophy: the RNP connection. Trends Mol Med 2006; 12: 113–121.
[55] 
Pellizzoni L.: Chaperoning ribonucleoprotein biogenesis in health and disease. EMBO Rep 2007; 8: 340–345.
[56] 
Gabanella F., Butchbach M.E.R., Saieva L., et al.: Ribonucleoprotein Assembly Defects Correlate with Spinal Muscular Atrophy Severity and Preferentially Affect a Subset of Spliceosomal snRNPs. PLoS One 2007; 2(9): e921.
[57] 
Carrel T.L., McWhorter M.L., Workman E., et al.: Survival Motor Neuron Function in Motor Axons Is Independent of Functions Required for Small Nuclear Ribonucleoprotein Biogenesis. J Neurosci 2006; 26: 11014–11022.
[58] 
Fan L., Simard L.R.: Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Hum Mol Genet 2002; 11: 1605–1614.
[59] 
Chaytow H., Huang Y.T., Gillingwater T.H., et al.: The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Mol Life Sci 2018; 75: 3877–3894.
[60] 
Weber J.J., Clemensson L.E., Schiöth H.B., et al.: Olesoxime in neurodegenerative diseases: Scrutinising a promising drug candidate. Biochem Pharmacol 2019; 168: 305–318.
[61] 
Martin L.J.: Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs 2010; 13: 568–580.
[62] 
Bordet T., Buisson B., Michaud M., et al.: Identification and Characterization of Cholest-4-en-3-one, Oxime (TRO19622), a Novel Drug Candidate for Amyotrophic Lateral Sclerosis. J Pharmacol Exp Ther 2007; 322: 709–720.
[63] 
Bertini E., Dessaud E., Mercuri E., et al.: Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017; 16: 513–522.
[64] 
Hwee D.T., Kennedy A.R., Hartman J.J., et al.: The Small-Molecule Fast Skeletal Troponin Activator, CK-2127107, Improves Exercise Tolerance in a Rat Model of Heart Failure. J Pharmacol Exp Ther 2015; 353: 159–168.
[65] 
Andrews J.A., Miller T.M., Vijayakumar V., et al.: CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve 2018; 57: 729–734.
[66] 
Feng Z., Ling K.K.Y., Zhao X., et al.: Pharmacologically induced mouse model of adult spinal muscular atrophy to evaluate effectiveness of therapeutics after disease onset. Hum Mol Genet 2016; 25: 964–975.
[67] 
Kirschner J., Schorling D., Hauschke D., et al.: Somatropin treatment of spinal muscular atrophy: A placebo-controlled, double-blind crossover pilot study. Neuromuscul Disord 2014; 24: 134–142.
[68] 
Gandini R., Dossena S., Vezzoli V., et al.: LSm4 associates with the plasma membrane and acts as a co-factor in cell volume regulation. Cell Physiol Biochem 2008; 22: 579–590.
[69] 
Corti S., Locatelli F., Papadimitriou D., et al.: Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 2006; 15: 167–187.
[70] 
Corti S., Nizzardo M., Nardini M., et al.: Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. J Clin Invest 2008; 118: 3316–3330.
[71] 
Corti S., Nizzardo M., Simone C., et al.: Genetic Correction of Human Induced Pluripotent Stem Cells from Patients with Spinal Muscular Atrophy. Sci Transl Med 2012; 4: 162–165.
[72] 
Ando S., Funato M., Ohuchi K., et al.: The Protective Effects of Levetiracetam on a Human iPSCs-Derived Spinal Muscular Atrophy Model. Neurochem Res 2019; 44: 1773–1779.
[73] 
Godfrey C., Desviat L.R., Smedsrød B., et al.: Delivery is key: lessons learnt from developing spliceαswitching antisense therapies. EMBO Mol Med 2017; 9: 545–557.
[74] 
Sazani P., Kole R.: Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J Clin Invest 2003; 112: 481–486.
[75] 
Havens M.A., Hastings M.L.: Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 2016; 44: 6549–6563.
[76] 
Zanetta C., Riboldi G., Nizzardo M., et al.: Molecular, genetic and stem cell-mediated therapeutic strategies for spinal muscular atrophy (SMA). J Cell Mol Med 2014; 18: 187–196.
[77] 
Hua Y., Sahashi K., Rigo F., et al.: Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 2011; 478: 123–126.
[78] 
Nizzardo M., Simone C., Salani S., et al.: Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy α7 mouse model phenotype. Clin Ther 2014; 36: 340-356.
[79] 
Porensky P.N., Mitrpant C., McGovern V.L., et al.: A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet 2012; 21: 1625–1638.
[80] 
Chiriboga C.A., Swoboda K.J., Darras B.T., et al.: Results from a phase 1 study of nusinersen (ISIS-SMN Rx) in children with spinal muscular atrophy. Neurology 2016; 86: 890–897.
[81] 
Finkel R.S., Chiriboga C.A., Vajsar J., et al.: Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 2016; 388: 3017–3026.
[82] 
Rigo F., Chun S.J., Norris D.A., et al.: Pharmacology of a central nervous system delivered 2’-O-methoxyethyl- modified survival of motor neuron splicing oligonucleotide in mice and nonhuman primates. J Pharmacol Exp Ther 2014; 350: 46–55.
[83] 
Kletzl H., Marquet A., Günther A., et al.: The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and Adres do korespondencji.Anna Szczerba: Katedra i Zakład Biologii Komórki, Uniwersytet Medyczny im. Karola Marcinkowskiego w Poznaniu; ul. Rokietnicka 5D, Poznań abosacka@ump.edu.plsurvival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2019; 29(1):21–29.
[84] 
Naryshkin N.A., Weetall M., Dakka A., et al.: Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 2014; 345: 688–693.
[85] 
Sivaramakrishnan M., McCarthy K.D., Campagne S., et al.: Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nat Commun 2017; 8: 1476.
[86] 
Kletzl H., Marquet A., Günther A., et al.: The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscul Disord 2019; 29: 21–29.
[87] 
Sturm S., Günther A., Jaber B., et al.: A phase 1 healthy male volunteer single escalating dose study of the pharmacokinetics and pharmacodynamics of risdiplam (RG7916, RO7034067), a SMN2 splicing modifier. Br J Clin Pharmacol 2019; 85: 181–193.
[88] 
Byrnes A.: May 24, 2019 Summary Basis for Regulatory Action - ZOLGENSMA. 2019, [15 screen pages] Address; https://www.fda.gov/media/127961.
[89] 
Hammond S.L., Leek A.N., Richman E.H., et al.: Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS One 2017; 12(12): e0188830.
[90] 
Schuster D.J., Dykstra J.A., Riedl M.S., et al.: Biodistribution of adeno-associated virus serotype 9 (AAV9) vector after intrathecal and intravenous delivery in mouse. Front Neuroanat 2014; 8: 42.
[91] 
Mendell J.R., Al-Zaidy S., Shell R., et al.: Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N Engl J Med 2017; 377: 1713–1722.
Powrót
 

Najczęsciej pobierane
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17
Funkcjonalne systemy klasyfikacyjne w mózgowym porażeniu dziecięcym – Communication Function Classification System
Neurol Dziec 2014; 23, 46: 35-38

Narzędzia artykułu
Manager cytowań
Format:

Scholar Google
Artykuły aut.:Szczerba A
Artykuły aut.:Śliwa A
Artykuły aut.:Żarowski M
Artykuły aut.:Jankowska A

PubMed
Artykuły aut.:Szczerba A
Artykuły aut.:Śliwa A
Artykuły aut.:Żarowski M
Artykuły aut.:Jankowska A


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych