Vol. 27/2018 Nr 55
okładka czasopisma Child Neurology
powiększenie okładki
Informacje o Pismie

NEUROLOGIA DZIECIĘCA

Pismo Polskiego Towarzystwa Neurologów Dziecięcych

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Półrocznik

RANKING
Ministerstwo Nauki i Szkolnictwa Wyższego: 11
Index Copernicus: 80,00



Powrót

Padaczka w wybranych chorobach neurometabolicznych


Epilepsy in selected neurometabolic diseases




Katedra i Klinika Neurologii Dziecięcej, Wydział Nauk Medycznych, Śląski Uniwersytet Medyczny, Katowice

DOI: 10.20966/chn.2018.55.428
Neurol Dziec 2018; 27, 55: 29-37
Pełen tekst artykułu PDF Padaczka w wybranych chorobach neurometabolicznych



STRESZCZENIE
W grupie chorób neurometabolicznych padaczka stanowi bardzo częsty objaw. Ponad 268 wrodzonych wad metabolizmu w obrazie klinicznym zawiera napady padaczkowe. W przypadku drgawek noworodkowych wrodzone wady metabolizmu (wwm) można zdiagnozować u 1,1–7,4% pacjentów. Według innych autorów częstość występowania padaczki w chorobach neurometabolicznych wynosi około 7%. Wczesna diagnoza poddających się leczeniu wrodzonych wad metabolizmu przebiegających z padaczką jest niezwykle istotna. Autorzy dokonują przeglądu wiedzy na temat wybranych, poddających się leczeniu wwm stanowiących przyczynę padaczki.

Słowa kluczowe: padaczka, choroby neurometaboliczne, dzieci


ABSTRACT
In the group of neurometabolic diseases epilepsy is a common feature. Over 268 inborn errors of metabolism may cover epileptic seizures in their clinical picture. In the case of newborn seizures, inborn errors of metablism may be diagnosed in 1,1–7,4% of patients. According to other authors, incidence of epilepsy in neurometabolic disorders is around 7%. Early diagnosis of epilepsy in the course of treatable metabolic diseases is crucial. The authors have reviewed the selected treatable metabolic conditions as a cause of epilepsy.

Key words: epilepsy, neurometabolic diseases, children


PIŚMIENNICTWO
[1] 
Van Karnebeek C.D.M., Sayson B., Lee J.J.Y. et al.: Metabolic evaluation of epilepsy: a diagnostics algorithm with focus on treatable conditions. Front Neurol 2018;9: 1016: 1–12.
[2] 
Van Karnebeek C.D.M., Shevell M., Zschocke J. et al.: The metabolic evaluation of the child with an intellectual development al disorder: di-agnostics algorithm for identification of treatable causes and new digital resource. Mol Genet Metab 2014; 111: 428–438.
[3] 
Van Karnebeek C.D., Stockler-Ipsiroglu S.: Early identification of treat-able inborn errors of metabolism in children with intellectual disability: the treatable intellectual disability endeavor protocol in British Columbia. Paediatr Child Health 2014; 19: 469–471.
[4] 
Almannai M., El-Hattab A.W.: Inborn errors of metabolism with seizures. Defects of glycine and serine metabolism and co-factor-related disor-ders. Pediatr Clin N Am 2018; 65: 279–299.
[5] 
Campistol J.: Epilepsy in inborn errors of metabolism with therapeutic options. SemPedNeurol 2016; 23: 321–331.
[6] 
Bahi-Buisson N., Dulac O.: Epilepsy in inborn errors of metabolism. Chap-ter 56, pp. 533–541. Handbook of Clinical Neurology. Vol III (3rd series). Pediatric Neurology Part I. Dulac O., Lassonde M., Sarnat H.B., Editors. Elsevier 2013.
[7] 
Yu J.Y., Pearl P.L.: Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat 2013, Article ID 124934, 20 pages
[8] 
Mastrangelo M.: Actual insights into treatable inborn errors of metabo-lism causing epilepsy. J Pediatr Neurosci 2018; 13: 13–23.
[9] 
Ferreira C.R., van Karnebeek C.D.M., Vockley J. et al.: A proposed nosol-ogy of inborn errors of metabolism. Genet Med 2018; 20: 151–158.
[10] 
Lee J.J.Y., Wasserman W.W., Hoffmann G.F. et al.: Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med 2018; 20:151–158.
[11] 
Sharma S., Prasad A.N.: Inborn errors of metabolism and epilepsy: cur-rent understanding, diagnosis, and treatment approaches. Int J Mol Sci 2017; 18: 1384.
[12] 
Pearl L.P.: Amenable treatable severe pediatric epilepsies. Sem Ped Neu-rol 2016; 23: 158–166.
[13] 
Liu X., Li R., Chen S. et al.: Screening of inherited metabolic abnormali-ties in 56 children with intractable epilepsy. ExpTher Med 2016; 12: 135–140.
[14] 
Wesół-Kucharska D., Rokicki D.: Drgawki pirydoksynozależne – aktualna diagnostyka i leczenie. Neur Dziec 2016: 51: 47–53.
[15] 
Been J.V., Bok L.A., Andriessen P., Reiner W.O.: Epidemiology of pyri-doxine dependent seizures in the Netherlands. Arch Dis Child 2005; 90: 1293–1296.
[16] 
Baxter P.: Epidemiology of pyridoxine dependent seizures in the UK. Arch Dis Child 1999; 81,5: 431–433.
[17] 
Falsaperla R., Vari M.S., Toldo I., et al.: Pyridoxine-dependent epilepsies: an observational study on clinical, diagnostics, therapeutic and prognos-tic features in a pediatric cohort. Met Brain Dis 2018; 33: 261–269.
[18] 
Baumgart A., Spiczak S.V., Verhoeven-Duif N.M. et al.: Atypical vitamin B6 deficiency: a rare cause of unexplained neonatal and infantile epilepsies. J Child Neurol 2014; 29: 704–707.
[19] 
Mohamed-Ahmed A.H.A., Wilson M.P., Albuera M. et al.: Quality and stability of extemporaneous pyridoxal phosphate preparations used in the treatment of paediatric epilepsy. J Pharm Pharmacol 2017; 69: 480–488.
[20] 
Pope S., Artuch R., Heales S. et al.: Cerebral foliate deficiency: Analytical test and differential diagnosis. J Inherit Metab Dis 2019 Jul;42(4):655–672. doi: 10.1002/jimd.12092. Epub 2019 May 2
[21] 
Guliyeva U., Okur I., Dulac O. et al.: Epilepsy in biotinidase deficiency is distinct from early myoclonic encephalopathy. Neuropediatrics 2018; 49: 417–418.
[22] 
Micó S.I., Jiménez R.D., Salcedo E.M. et al.: Epilepsy in biotinidase defi-ciency after biotin treatment.JIMD Rep 2012; 4: 75–78.
[23] 
Donti T.R., Blackburn P.R., Atwal P.S.: Holocarboxylase synthetase defi-ciency pre- and post newborn screening. Mol Genet Metab Rep 2016; 7: 40–44.
[24] 
Fons C., Campistol J.: Creatine defects and central nervous system. Se-min Pediatr Neurol 2016; 23: 285–289.
[25] 
Stern W.M., Winston J.S., Murphy E. et al.: Guanidinoacetate methyl-transferase (GAMT) deficiency: a rare but treatable epilepsy. Pract Neu-rol 2017; 17: 207–211.
[26] 
Mikati A.G., Abu Gheida I., Shamseddine A. et al.: Epileptic and electro-encephalographic manifestations of guanidinoacetate-methyltransfer-ase deficiency. Epileptic Disord 2013; 15: 407–416.
[27] 
Stockler-Ipsiroglu S., van Karnebeek C.D.: Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders. Semin Neurol 2014; 34: 350–356.
[28] 
Ma T., Wu Y., Chen B. et al.: D-Serine contributes to seizure development via ERK signaling. Front Neurosci 2019; 13: 254:1–12.
[29] 
Durmaz M.S., Özbakır B.: Molybdenum cofactor deficiency: Neuroimag-ing findings. Radiol Case Rep 2018; 13: 592–595.
[30] 
Hannah-Shmouni F., MacNeil L., Potter M. et al.: Severe cystic degenera-tion and intractable seizures in a newborn with molybdenum cofactor deficiency type B. Mol Genet Metab Rep 2018;20;18: 11–13.
[31] 
Szczepanik E., Terczyńska I., Kruk M. et al.: Glucose transporter type 1 deficiency due to SLC2A1 mutations- a rare but treatable cause of meta-bolic epilepsy and extrapyramidal movement disorder: own experience and review. Dev Period Med 2015; 19: 454–463.
[32] 
Vigevano F., Arzimanoglou A., Plouin P. et al.: Therapeutic approach to epileptic encephalopathies.Epilepsia2013; 54 Suppl 8: 45–50.
[33] 
Pong A.W., Geary B.R., Engelstad K.M. et al.: Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia 2012; 53: 1503–1510.
[34] 
Hyland K.: Cerebrospinal fluid analysis in the diagnosis of treatable in-herited disorders of neurotransmiter metabolism. Future Neurol2006; 1: 593–603.
[35] 
Rai V., Kumar P.: Methylenetetrahydrofolate reductase C677T polymor-phism and susceptibility to epilepsy. Neurol Sci 2018; 39: 2033–2041.
[36] 
D’Aco K.E., Bearden D., Watkins D. et al.: Severe 5,10-methylenetetrahy-drofolate reductase deficiency and two MTHFR variants in an adolescent with progressive myoclonic epilepsy. Pediatr Neurol 2014; 51: 266–270.
[37] 
Hyland K.: Cerebrospinal fluid analysis in the diagnosis of treatable in-herited disorders of neurotransmitter metabolism. Future Neurol 2006; 1: 593–603.
[38] 
Stence N.V., Fenton L.Z., Levek C. et al.: Brain imaging in classic nonke-totic hyperglycinemia: Quantitative analysis and relation to phenotype. J Inherit Metab Dis 2019; 42: 438–450.
[39] 
Swanson M.A., Coughlin C.R. Jr, Scharer G.H. et al.: Biochemical and molecular predictors for prognosis in nonketotic hyperglycinemia. Ann Neurol 2015; 78: 606–618.
[40] 
Bahi-Buisson N., Kaminska A., Nabbout R. et al.: Epilepsy in Menkes disease: analysis of clinical stages. Epilepsia 2006; 47: 380–386.
[41] 
Vairo F.P.E., Chwal B.C., Perini S. et al.: A systematic review and evi-dence-based guideline for diagnosis and treatment of Menkes disease.Mol Genet Metab 2019; 126: 6–13.
[42] 
Ołtarzewski M. Badania przesiewowe noworodków w Polsce, rok 2018. Postępy Neonatologii 2018; 24: 111–122.
Powrót
 

Najczęsciej pobierane
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17
Funkcjonalne systemy klasyfikacyjne w mózgowym porażeniu dziecięcym – Communication Function Classification System
Neurol Dziec 2014; 23, 46: 35-38

Narzędzia artykułu
Manager cytowań
Format:

Scholar Google
Artykuły aut.:Paprocka J
Artykuły aut.:Emich-Widera E

PubMed
Artykuły aut.:Paprocka J
Artykuły aut.:Emich-Widera E


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych