[1]
Hagberg B., Aicardi J., Dias K., et al.: A progressive syndrome of
autism dementia ataxia and loss of purposeful hand use in girls: Rett’s
syndrome: report of 35 cases. Ann Neurol 1983; 14: 471-479.
[2]
Online Mendelian Inheritance in Man .www.ncbi.nlm.nih.gov/omim/
[3]
Midro A.T.: Genetyczne podłoże zespołu Retta – gen MECP2. Neurol
Dziec 2001; 10: 71-83.
[4]
Midro A.T.: Poradnictwo genetyczne w zespole Retta. Część I. Diagnoza
fenotypowa i molekularna. Przegl Ped 2002; 32 (2): 98-103.
[5]
Midro A.T.: Poradnictwo genetyczne w zespole Retta. Część II. Problemy
psychologiczne i prognoza rozwoju. Przegl Ped 2002; 32 (2): 158-162.
[6]
Uścińska E., Skawrońska M., Midro A.T.: Poradnictwo genetyczne w z.
Retta. Część III. Korelacja genotypowo-fenotypowa. Przegl Ped 2005; 35
(1): 41-49.
[7]
Midro A.T., Midro H.: Czy dialog genów ze środowiskiem może
kształtować fenotyp zachowania w zespole Retta i innych zaburzeniach?
Psych Pol 2006; 11 (5): 949-967.
[8]
Midro A.T.: Nie tylko genetyczne uwarunkowanie zespołu Retta. Autyzm
2006; 5: 22-27.
[9]
Midro A. T., Haus O., Kobel-Buys K. et al.: Możliwości wspomagania
rozwoju dzieci z zespołami uwarunkowanymi genetycznie. Doświadczenia
z corocznych spotkań integracyjnych. [w:] W drodze do brzegu życia.
Krajewska-Kułak E., Nyklewicz W., Łukaszuk C. (red.), Uniwersytet
Medyczny, Białystok 2008, V, 315-329.
[10]
Midro A.T., Posmyk R.: Poradnictwo genetyczne w zespole Retta. Część
IV. Udział rodziców. Przegl Ped 2009; 39 (3): 193-199.
[11]
Midro A.T.: Schorzenia uwarunkowane genetycznie ze szczególnym
uwzględnieniem schorzeń genomowych. [w:] Pediatria – co nowego?
Otto-Buczkowska E. (red.), Cornetis, Wrocław 2007, 361-369.
[12]
Midro A.T.: Śmierć społeczna w praktyce genetyki klinicznej. [w:] W
drodze do brzegu życia. Krajewska-Kułak E., Nyklewicz W., Łukaszuk C.
(red.), Uniwersytet Medyczny, Białystok 2007, III, 399-408.
[13]
Midro A.T.: Nie tylko genetyczne uwarunkowanie zespołu Retta. Autyzm
2006; 5: 22-27.
[14]
Zoghbi H.Y.: Postnatal neurodevelopmental disorders: meeting at the
synapse? Science 2003; 302: 826–830.
[15]
Williamson S.L., Christodoulou J.: Rett syndrome: new clinical and
molecular insights. Eur J Hum Genet. 2006; 14 (8): 896-903.
[16]
Chahrour M., Zoghbi H.Y.: The Story of Rett Syndrome: From Clinic to
Neurobiology. Neuron 2007; 56 (3): 422-437.
[17]
Mount R.H., Hastings R.P., Reilly S. et al.: Behavioural and emotional
features in Rett syndrome. Disabil Rehabil 2001; 23: 129–138.
[18]
Nomura Y.: Early behavior characteristics and sleep disturbance in Rett
syndrome. Brain Dev 2005; 27 (1): 35–42.
[19]
Weese-Mayer D.E., Lieske S.P., Boothby C.M. et al.: Autonomic nervous
system dysregulation: breathing and heart rate perturbation during
wakefulness in young girls with Rett syndrome. Pediatr Res 2006; 60:
443–449.
[20]
Jian L., Nagarajan L., de Klerk N. et al.: Predictors of seizure onset in Rett
syndrome. J Pediatr 2006; 49: 542–547.
[21]
Hagberg B.: Rett syndrome: long-term clinical follow-up experiences
over four decades J Child Neurol 2005; 20: 722–727.
[22]
Roze E., Cochen V., Sangla S. et al.: Rett syndrome: An overlooked
diagnosis in women with stereotypic hand movements psychomotor
retardation Parkinsonism and dystonia? Mov Disord 2007; 22: 387–
389.
[23]
Ogier M., Katz D.M.: Breathing dysfunction in Rett syndrome:
Understanding epigenetic regulation of the respiratory network. Respir
Physiol Neurobiol 2008; 164: 55–63.
[24]
Moser S.J., Weber P., Lutschg J.: Rett syndrome: clinical and
electrophysiologic aspects. Pediatr Neurol 2007; 36: 95–100.
[25]
Glaze D.G.: Neurophysiology of Rett syndrome J. Child Neurol 2005; 20:
740–746.
[26]
Chahrour M., Zoghbi H.Y.: The story of Rett syndrome: from clinic to
neurobiology. Neuron 2007; 56 (3): 422-437.
[27]
Amir R.E., Van D.V., Wan M. et. al.: Rett syndrome is caused by mutation
in X-linked MECP2, encoding metyl-CpG-binding protein 2. Nat Genet
1999; 23: 185-188.
[28]
Venancio M., Santos M., Pereira S.A. et al.: An explanation for another
familial case of Rett syndrome: maternal germline mosaicism. Europ J.
Hum Genet 2007; 15: 902-904.
[29]
Gill H., Cheadle J.P., Maynard J. et al.: Mutation analysis in the MECP2
gene and genetic counselling for Rett syndrome. J Med Genet 2003; 40:
380-384.
[30]
Evans J.C., Archer H.L., Whatley S.D. et al.: Germline mosaicism for a
MECP2 mutation in a man with two Rett daughters. Clin Genet 2006; 70
(4): 336-338.
[31]
Villard L., Lévy N., Xiang F. et al.: Segregation of a totally skewed pattern
of X chromosome inactivation in four familial cases of Rett syndrome
without MECP2 mutation: implications for the disease. J Med Genet
2001; 38 (7): 435-442.
[32]
Quaderi N.A., Meehan R.R., Tate P.H. et al.: Genetic and physical mapping
of a gene encoding a methyl CpG binding protein Mecp2, to the mouse X
chromosome. Genomics 1994; 22: 648-651.
[33]
D’Esposito M., Quaderi N.A., Ciccodicola A. et al.: Isolation physical
mapping and northern analysis of the X-linked human gene encoding
methyl CpG-binding protein MECP2. Mamm Genome 1996; 7: 533–535.
[34]
Singh J., Saxena A., Christodoulou J. et al.: MECP2 genomic structure
and function: insights from ENCODE. Nucleic Acids Res 2008; 36(19):
6035-6047.
[35]
Jurkiewicz D., Popowska E., Tylki-Szymańska A. et al.: Molekularne
mechanizmy powstawania zespołu Retta. Post Biol Kom 2006; 33 (2):
186-196.
[36]
Djarmati A., Dobricic V, Kecmanovi M. et al.: MECP2 mutations in Serbian
Rett syndrome patients. Acta Neurol Scand 2007; 116: 413-419.
[37]
Matijevic T., Knezevic J., Slavica M. et al.: Rett Syndrome: From the
Gene to the Disease. Eur Neurol 2008; 61 (1): 3-10.
[38]
Ariani F., Mari F., Pescucci C. et al.: Real-time quantitative PCR as a routine
method for screening large rearrangements in Rett syndrome: Report of
one case of MECP2 deletion and one case of MECP2 duplication. Hum
Mutat 2004; 24: 172–177.
[39]
Friez M.J., Jones J.R., Clarkson K. et al.: Recurrent infections hypotonia
and mental retardation caused by duplication of MECP2 and adjacent
region in Xq28. Pediatrics 2006; 118: 1687–1695.
[40]
Lugtenberg D., de Brouwer A.P., Kleefstra T. et al.: Chromosomal copy
number changes in patients with non-syndromic X linked mental
retardation detected by array CGH. J Med Genet 2006; 43: 362–370.
[41]
Meins M., Lehmann J., Gerresheim F. et al.: Submicroscopic duplication
in Xq28 causes increased expression of the MECP2 gene in a boy with
severe mental retardation and features of Rett syndrome. J Med Genet
2005; 42: 12.
[42]
Van Esch H., Bauters M., Ignatius J. et al.: Duplication of the MECP2
region is a frequent cause of severe mental retardation and progressive
neurological symptoms in males. Am J Hum Genet 2005; 77: 442-453.
[43]
Gonzales M.L., LaSalle J.M.: The role of MeCP2 in brain development
and neurodevelopmental disorders. Curr Psychiatry Rep 2010; 2: 127-
134.
[44]
Bourdon V., Philippe C., Bienvenu T.et al.: Evidence of somatic mosaicism
for a MECP2 mutation in females with Rett syndrome: diagnostic
implications. J Med Genet 2001; 38: 867-871.
[45]
Huppke P., Maier E. M., Warnke A. et al.: Very mild cases of Rett
syndrome with skewed X inactivation. J Med Genet 2006; 43: 814-816.
[46]
Dragich J., Houwink-Manville C., Schanen N. et al.: Rett syndrome: a
surprising result of mutation in MECP2. Hum Mol Genet 2000; 9: 2365-
2375.
[47]
Young I., Zoghbi H.Y.: X-chromosome inactivation patterns are unbalanced
and affect the phenotypic outcome in a mouse model of rett syndrome.
Am J Hum Genet 2004; 74: 511–520.
[48]
Scala E., Longo I., Ottimo F. et al.: MECP2 deletions and genotypephenotype
correlation in Rett syndrome. Am J Med Genet A 2007; 143:
2775-2784.
[49]
Takahashi S., Ohinata J., Makita Y., et al.: Skewed X chromosome
inactivation failed to explain the normal phenotype of a carrier female
with MECP2 mutation resulting in Rett syndrome. Clin Genet 2008; 73:
257-261.
[50]
Xinhua B., Shengling J., Fuying S. et al.: X chromosome inactivation
in Rett syndrome and its correlations with MECP2 mutations and
phenotype. J Child Neurol 2008; 23: 22-25.
[51]
Mari F., Azimonti S., Bertani I. et al.: CDKL5 belongs to the same
molecular pathway of MeCP2 and it is responsible for the early-onset
seizure variant of Rett syndrome. Hum Mol Genet 2005; 14: 1935-1946.
[52]
Bertani I., Rusconi L., Bolognese F. et al.: Functional consequences of
mutations in CDKL5, an X linked gene involved in infantile spasms and
mental retardation. J Biol Chem 2006; 281: 32048-32056.
[53]
Weaving L.S., Christodoulou J., Williamson S.L. et al.: Mutations of
CDKL5 cause a severe neurodevelopmental disorder with infantile
spasms and mental retardation. Am J Hum Genet 2004; 75: 1079-
1093.
[54]
Tao J., Van Esch H., Hagedorn-Greiwe M. et al.: Mutations in the Xlinked
cyclin-dependent kinase-like 5 (CDKL5/ STK9) gene are associated
with severe neurodevelopmental retardation. Am J Hum Genet 2004; 75:
1149-1154.
[55]
Shoichet S.A., Kunde S.A., Viertel P. et al.: Haploinsufficiency of novel
FOXG1B variants in a patient with severe mental retardation brain
malformations and microcephaly. Hum Genet 2005; 117: 536-544.
[56]
Ariani F., Hayek G., Rondinella D. et al.: FOXG1 is responsible for the
congenital variant of Rett syndrome. Am J Hum Genet 2008; 83: 89-93.
[57]
Zweier M., Gregor A., Zweier C. et al.: Mutations in MEF2C from the
5q14.3q15 microdeletion syndrome region are a frequent cause of
severe mental retardation and diminish MECP2 and CDKL5 expression.
Hum Mutat 2010; 31: 722-733.
[58]
Borg I., Freude K., Kübart S. et al.: Disruption of Netrin G1 by a balanced
chromosome translocation in a girl with Rett syndrome. Eur J Hum Genet
2005; 13: 921-927.
[59]
Archer H.L., Evans J.C., Millar D.S. et al.: NTNG1 mutations are a rare
cause of Rett syndrome. Am J Med Genet A 2006; 140: 691-694.
[60]
Chahrour M., Zoghbi HY.: The story of Rett syndrome: from clinic to
neurobiology. Neuron 2007; 56 (3): 422-437.
[61]
Chahrour M., Jung S.Y., Shaw C. et al.: MeCP2, a key contributor to
neurological disease activates and represses transcription. Science
2008; 320 (5880): 1224-1229.
[62]
Chen W.G., Chang Q., Lin Y. et al.: Derepression of BDNF transcription
involves calcium-dependent phosphorylation of MeCP2. Science 2003;
302: 885-889.
[63]
Zhou Z., Hong E.J., Cohen S. et al.: Brain-specific phosphorylation of
MeCP2 regulates activity-dependent Bdnf transcription, dendritic
growth, and spine maturation. Neuron 2006; 52 (2): 255-269.
[64]
Flavell S.W., Greenberg M.E.: Signaling mechanisms linking neuronal
activity to gene expression and plasticity of the nervous system. Annu
Rev Neurosci 2008; 31: 563-590.
[65]
Smrt R.D., Eaves-Egenes J., Barkho B.Z. et al.: Mecp2 deficiency leads
to delayed maturation and altered gene expression in hippocampal
neurons. Neurobiol Dis 2007; 27: 77-89.
[66]
Asaka Y., Jugloff D.G., Zhang L. et al.: Hippocampal synaptic plasticity
is impaired in the Mecp2-null mouse model of Rett syndrome. Neurobiol
Dis 2006; 21: 217-227.
[67]
Belichenko P.V., Dahlstrom A.: Studies on the 3-dimensional architecture
of dendritic spines and varicosities in human cortex by confocal laser
scanning microscopy and Lucifer yellow microinjections. J Neurosci
Methods 1995; 57: 55-61.
[68]
Armstrong D.D.: Neuropathology of Rett syndrome. Ment Retard Dev
Disabil Res Rev 2002; 8: 72-76.
[69]
Kishi N., Macklis J.D.: MECP2 is progressively expressed in postmigratory
neurons and is involved in neuronal maturation rather than cell fate
decisions. Mol Cell Neurosci 2004; 27: 306-321.
[70]
Kline D.D., Ogier M., Kunze D.L. et al.: Exogenous brain-derived
neurotrophic factor rescues synaptic dysfunction in mecp2-null mice. J
Neuroscience 2010; 30 (15): 5303-5310.
[71]
Tropea D., Giacometti E., Wilson N.R. et al.: Partial reversal of Rett
Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci
USA 2009; 106 (6): 2029-2034.
[72]
Marcus C.L., Carroll J.L., McColley S.A. et al.: Polysomnographic
characteristics of patients with Rett syndrome. J Pediatr 1994; 125:
218-224.
[73]
Julu P.O., Kerr A.M., Apartopoulos F. et al.: Characterisation of breathing
and associated central autonomic dysfunction in the Rett disorder. Arch
Dis Child 2001; 85: 29-37.
[74]
Stettner G.M., Huppke P., Brendel C. et al.: Breathing dysfunctions
associated with impaired control of postinspiratory activity in Mecp2_/y
knockout mice. J Physiol 2007; 579: 863-876.
[75]
Viemari J.C., Roux J.C., Tryba A.K. et al.: Mecp2 deficiency disrupts
norepinephrine and respiratory systems in mice. J Neurosci 2005; 25:
11521-11530.
[76]
Chang Q., Khare G., Dani V. et al.: The disease progression of Mecp2
mutant mice is affected by the level of BDNF expression. Neuron 2006;
49: 341-348.
[77]
Wang H., Chan S.A., Ogier M. et al.: Dysregulation of brain-derived
neurotrophic factor expression and neurosecretory function in Mecp2
null mice. J Neurosci 2006; 26: 10911-10915.
[78]
Katz D.M.: Regulation of respiratory neuron development by neurotrophic
and transcriptional signaling mechanisms. Respir Physiol Neurobiol
2005; 149: 99-109.
[79]
Baker-Herman T.L., Fuller D.D., Bavis R.W. et al.: BDNF is necessary and
sufficient for spinal respiratory plasticity following intermittent hypoxia.
Nat Neurosci 2004; 7: 48-55.
[80]
Wilkerson J.E., Mitchell G.S.: Daily intermittent hypoxia augments spinal
BDNF levels, ERK phosphorylation and respiratory long-term facilitation.
Exp Neurol 2009; 217 (1): 116-123.
[81]
De Felice C., Ciccoli L., Leoncini S. et al.: Systemic oxidative stress in
classic Rett syndrome. Free Radic Biol Med 2009; 47 (4 ): 440-448.
[82]
Ogier M., Wang H., Hong E. et al.: Brain-Derived Neurotrophic Factor
Expression and Respiratory Function Improve after Ampakine Treatment
in a Mouse Model of Rett Syndrome. J Neurosci 2007; 27 (40): 10912-
10917.
[83]
Lauterborn J.C., Lynch G., Vanderklish P. et al.: Positive modulation of
AMPA receptors increases neurotrophin expression by hippocampal and
cortical neurons. J Neurosci 2000; 20: 8-21.
[84]
Lauterborn J.C., Truong G.S., Baudry M. et al.: Chronic elevation of brainderived
neurotrophic factor by ampakines. J Pharmacol Exp Ther 2003;
307: 297-305.
[85]
Rex C.S., Lauterborn J.C., Lin C.Y. et al.: Restoration of long-term
potentiation in middle-aged hippocampus after induction of brain-derived
neurotrophic factor. J Neurophysiol 2006; 96: 677-685.
[86]
Wezenberg E., Jan Verkes R., Ruigt G.S. et al.: Acute effects of the
ampakine farampator on memory and information processing in healthy
elderly volunteers. Neuropsychopharmacology 2006; 32: 1272-1283.
[87]
Balkowiec A., Kunze D.L., Katz D.M.: Brain-derived neurotrophic factor
acutely inhibits AMPA-mediated currents in developing sensory relay
neurons. J Neurosci 2000; 20: 1904-1911.
[88]
Roux J.C., Dura E., Moncla A. et al.: Treatment with desipramine
improves breathing and survival in a mouse model for Rett syndrome.
Eur J Neurosci 2007; 25 (7): 1915-1919.
[89]
Zanella S., Mebarek S., Lajard A.M. et al.: Oral treatment with desipramine
improves breathing and life span in Rett syndrome mouse model. Respir
Physiol Neurobiol 2008; 160 (1): 116-121.
[90]
Kerr A.M.: A review of the respiratory disorder in the Rett syndrome.
Brain Dev 1992; 14: 43-45.
[91]
Woodyatt G.C., Murdoch B.E.: The effect of the presentation of visual
and auditory stimuli on the breathing patterns of two girls with Rett
syndrome. Intellect Disabil Res 1996; 40: 252-259.
[92]
Nuber U.A., Kriaucionis S., Roloff T.C. et al.: Up-regulation of
glucocorticoid-regulated genes in a mouse model of Rett syndrome.
Hum Mol Genet 2005; 14: 2247-2256.
[93]
McGill B.E., Bundle S.F., Yaylaoglu M.B. et al.: Enhanced anxiety and
stress-induced corticosterone release are associated with increased Crh
expression in a mouse model of Rett syndrome. Proc Natl Acad Sci USA
2006; 103: 18267-18272.
[94]
Fyffe S.L., Neul J.L., Samaco R.C. et al.: Deletion of Mecp2 in Sim1-
expressing neurons reveals a critical role for MeCP2 in feeding behavior
aggression and the response to stress. Neuron 2008; 59 (6): 947-958.
[95]
Deng V., Matagne V., Banine F. et al.: FXYD1 is an MeCP2 target gene
overexpressed in the brains of Rett syndrome patients and Mecp2-null
mice. Hum Mol Genet 2007; 16 (6): 640-650.
[96]
Horike S., Cai S., Miyano M. et al.: Loss of silent-chromatin looping and
impaired imprinting of DLX5 in Rett syndrome. Nat Genet 2005; 37: 31-
40.
[97]
Itoh M., Ide S., Takashima S. et al.: Methyl CpG-binding protein 2 (a
mutation of which causes Rett syndrome) directly regulates insulinlike
growth factor binding protein 3 in mouse and human brains. J
Neuropathol Exp Neurol 2007; 66 (2): 117-123.
[98]
Kriaucionis S., Paterson A., Curtis J. et al.: Gene expression analysis
exposes mitochondrial abnormalities in a mouse model of Rett syndrome.
Mol Cell Biol 2006; 26: 5033-5042.
[99]
Martinowich K., Hattori D., Wu H. et al.: DNA methylation-related
chromatin remodeling in activity-dependent Bdnf gene regulation.
Science 2003; 302: 890-893.
[100]
Nomura T., Kimura M., Horii T. et al.: MeCP2-dependent repression of an
imprinted miR-184 released by depolarization. Hum Mol Genet 2008; 17
(8): 1192-1199.
[101]
Peddada S., Yasui D.H., LaSalle J.M.: Inhibitors of differentiation (ID1,
ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated
in Rett syndrome. Hum Mol Genet 2006; 15: 2003-2014.
[102]
Samaco R.C., Nagarajan R.P., Braunschweig D. et al.: Multiple pathways
regulate MeCP2 expression in normal brain development and exhibit
defects in autism-spectrum disorders. Hum Mol Genet 2004; 13(6): 629-
639.
[103]
Li H., Radford J.C., Ragusa M.J. et al.: Transcription factor MEF2C
influences neural stem/progenitor cell differentiation and maturation in
vivo. Proc Natl Acad Sci U S A 2008; 105 (27): 9397-9402.