Vol. 30-31/2021-2022 Nr 60
okładka czasopisma Child Neurology
powiększenie okładki
Informacje o Pismie

NEUROLOGIA DZIECIĘCA

Pismo Polskiego Towarzystwa Neurologów Dziecięcych

PL ISSN 1230-3690
e-ISSN 2451-1897
DOI 10.20966
Półrocznik


Powrót

Czy terapia komórkami macierzystymi to przyszłość w leczeniu pacjentów z Mózgowym Porażeniem Dziecięcym?


Is stem cell therapy a future for the treatment of patients with Cerebral Palsy?




1Oddział Pediatrii i Neurologii Wieku Rozwojowego, SPSK Nr 6 Śląskiego Uniwersytetu Medycznego Górnośląskie Centrum Zdrowia Dziecka im. Jana Pawła II
2 Katedra i Klinika Neurologii Dziecięcej, Wydział Lekarski w Katowicach, Śląski Uniwersytet Medyczny w Katowicach
3 Poradnia Neurologiczna, SK Nr 6 Śląskiego Uniwersytetu Medycznego Górnośląskie Centrum Zdrowia Dziecka

https://doi.org/10.20966/chn.2019.56.438
Neurol Dziec 2019; 28, 56: 27-38
Pełen tekst artykułu PDF Czy terapia komórkami macierzystymi to przyszłość w leczeniu pacjentów
z Mózgowym Poraże



STRESZCZENIE
Mózgowe porażenie dziecięce (MPD) jest jedną z najczęstszych przyczyn niepełnosprawności wśród dzieci, a terapia MPD jest jednym z głównych wyzwań neurologii dziecięcej. Pomimo dowodów na skuteczność rehabilitacji i interwencji chirurgicznych na poprawę funkcjonowania pacjentów z MPD, brak jest obecnie skutecznego leczenia, które zmniejszałoby nasilenie choroby i wpływało na trwałą poprawę funkcjonowania pacjentów. Jednym z priorytetowych tematów badawczych jest obecnie zastosowanie komórek macierzystych w terapii chorób neurologicznych, w tym w MPD. W ostatnich kilku latach wzrasta liczba dokonanych podań komórek macierzystych u pacjentów z MPD, jak również prowadzonych badań klinicznych. Niniejszy artykuł przedstawia aktualny stan wiedzy dotyczący terapii MPD komórkami macierzystymi w celu odpowiedzi na pytanie czy terapia komórkami macierzystymi to szansa na bardziej efektywne leczenie pacjentów z MPD.

Słowa kluczowe: mózgowe porażenie dziecięce, choroby układu nerwowego, dziecko, komórki macierzyste, terapia komórkowa


ABSTRACT
Cerebral palsy (CP) is one of the most common causes of disability among children and CP therapy is one of the main challenges in pediatric neurology. Despite evidence of the effectiveness of rehabilitation and surgical interventions to improve the functioning of patients with CP, there is no effective treatment that would reduce the severity of the disease and affect the permanent improvement of functioning. One of the leading topics of current research is the use of stem cells in the treatment of neurological diseases, including CP. In the last few years the number of stem cell applications in CP as well as clinical trials has been increasing. This article presents the current state of knowledge regarding stem cell therapy in order to answer the question whether stem cell therapy is an opportunity for more effective treatment of patients with CP.

Key words: cerebral palsy, nervous system disease, child, stem cell, cell based therapy


PIŚMIENNICTWO
[1] 
Steinborn B.: Neurologia wieku rozwojowego. PZWL, Warszawa 2017.
[2] 
PTND pod redakcją Steinborn B.: Standardy postępowania diagnostyczno- terapeutycznego w schorzeniach układu nerwowego u dzieci i młodzieży. BiFolium, Lublin 2013.
[3] 
Hallman-Cooper J.M., Scott C.D.: Cerebral Palsy. StatPearls Publishing; 2019. Address: https://www.ncbi.nlm.nih.gov/books/NBK538147/#article- 19188.s2.
[4] 
Novak I., Walker K., Hunt R.W., et al.: Concise Review: Stem Cell Interventions for People With Cerebral Palsy: Systematic Review With Meta-Analysis. Stem Cells Transl Med 2016; 5: 1014–1025.
[5] 
Rizk M., Aziz J., Shorr R., et al.: Cell-Based Therapy Using Umbilical Cord Blood for Novel Indications in Regenerative Therapy and Immune Modulation: An Update Systemic Scoping Review of the Literature. Biol Blood Marrow Transpl 2017; 23: 1607–1613.
[6] 
California Institute for Regenerative Medicine. Cerebral Palsy Workshop 2012 Address: http://www.cirm.ca.gov
[7] 
Jantzie L.L., Scafidi J. and Robinson Sh.: Stem cells and cell-based therapies for cerebral palsy: a call for rigor. Ped Res 2018; 83: 345–355.
[8] 
McDonald C.A., Fahey M.C., Jenkin G., et al.: Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res 2018; 83: 333–344.
[9] 
Zestawienie leczonych pacjentów. Polski Bank Komórek Macierzystych: Address: https://www.pbkm.pl/o-komorkach-macierzystych/lista-przeszczepien- pbkm
[10] 
Mukai T., Tojo A., Nagamura-Inoue T.: Mesenchymal stromal cells as potential therapeutic for neurological disorders. Regen Ther 2018; 9: 32–37.
[11] 
Dominici M., Le Blanc K., Mueller I., et al.: Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.
[12] 
Horwitz E.M., Le Blanc K., Dominici M., et al.: Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393–395.
[13] 
Pojda Z., Machaj E., Kurzyk A., et al: Mezenchymalne komórki macierzyste. Postępy Biochem 2013; 59: 187–197.
[14] 
Jiao Y., Li X., Liu J.: A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2019; 28: 497–509.
[15] 
Park D.H., Lee J.H., Borlongan C.V., et al.: Transplantation of umbilical cord blood stem cells for treating spinal cord injury. Stem Cell Rev 2011; 7: 181–194.
[16] 
Park D.H., Borlongan C.V., Willing A.E., et al.: Human umbilical cord blood cell grafts for brain ischemia. Cell Transplant 2009; 18: 985–998.
[17] 
Kalaszczynska I., Ferdyn K.: Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of RegenerativeMedicine? Recent Findings and Clinical Significance. Biomed Res Int 2015; Article ID 430847.
[18] 
Chen J., Sanberg P.R., Li Y., et al.: Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32: 2682–2688.
[19] 
Lu D., Sanberg P.R., Mahmood A., et al.: Intravenous administration of human umbilical cord blood reduces neurological deficit in the rat after traumatic brain injury. Cell Transplant 2002; 11: 275–281.
[20] 
Hall A.A., Guyer A.G., Leonardo C.C., et al.: Human umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 2009; 87: 333–341.
[21] 
Li J., McDonald C.A., Fahey M.C., et al.: Could cord blood cell therapy reduce preterm brain injury? Front Neurol 2014; 5: Article 200.
[22] 
Geissler M., Dinse H.R., Neuhoff S., et al.: Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex. PLoS ONE 2011; 6:e20194.
[23] 
Meier C., Middelanis J., Wasielewski B., et al.: Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr Res 2006; 59: 244–249.
[24] 
Pimentel-Coelho P.M., Magalhaes E.S., Lopes L.M., et al.: Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to neuroprotection in the striatum. Stem Cells Dev 2010; 19: 351–358.
[25] 
Park W.S., Sung S.I., Ahn S.Y., et al.: Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS ONE 2015;10:e0120893.
[26] 
Kim D.K., Nishida H., An S.Y., et al.: Chromatographically isolated CD63+CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 2016; 113: 170–175.
[27] 
Bae S.H., Kong T.H., Lee H.S., et al.: Long-lasting paracrine effects of human cord blood cells on damaged neocortex in an animal model of cerebral palsy. Cell Transplant 2012; 21: 2497–2515.
[28] 
Min K., Song J., Kang J.Y., et al.: Umbilical cord blood therapy potentiated with erythropoietin for children with cerebral palsy: a double-blind, randomized, placebo-controlled trial. Stem Cells 2013; 31: 581–591.
[29] 
Bae S.H., Lee H.S., Kang M.S., et al.: The levels of pro-inflammatory factors are significantly decreased in cerebral palsy patients following an allogeneic umbilical cord blood cell transplant. Int J Stem Cells 2012; 5: 31–38.
[30] 
Lin M.N., Shang D.S., Sun W., et al.: Involvement of PI3K and ROCK signaling pathways in migration of bone marrow-derived mesenchymal stem cells through human brain microvascular endothelial cell monolayers. Brain Res 2013; 1513: 1–8.
[31] 
Matsushita T., Kibayashi T., Katayama T., et al.: Mesenchymal stem cells transmigrate across brain microvascular endothelial cell monolayers through transiently formed inter-endothelial gaps. Neurosci Lett 2011; 502: 41–45.
[32] 
Liu L., Eckert M.A., Riazifar H., et al.: From blood to the brain: can systemically transplanted mesenchymal stem cells cross the bloodbrain barrier? Stem Cells Int 2013; 2013: 435093.
[33] 
Chen A., Siow B., Blamire A.M., et al.: Transplantation of magnetically labeled mesenchymal stem cells in a model of perinatal brain injury. Stem Cell Res 2010; 5: 255–266.
[34] 
Papadopoulos K.I., Low S.S., Aw T.C., et al.: Safety and feasibility of autologous umbilical cord blood transfusion in 2 toddlers with cerebral palsy and the role of low dose granulocyte-colony stimulating factor injections. Restor Neurol Neurosci 2011; 29: 17–22.
[35] 
Paton M.C.B., Allison B.J., Li J., et al: Human Umbilical Cord Blood Therapy Protects Cerebral White Matter from Systemic LPS Exposure in Preterm Fetal Sheep. Dev Neurosci 2018; 40: 258–270.
[36] 
Beldick S.R., Hong J., Altamentova S., et al.: Severe-combined immunodeficient rats can be used to generate a model of perinatal hypoxic-ischemic brain injury to facilitate studies of engrafted human neural stem cells. PLoS One 2018; 13: 1–22.
[37] 
Search results for: cerebral palsy, stem cells, ClinicalTrials.gov Address:https://clinicaltrials.gov/ct2/esults?cond=cerebral+palsy+st em+cell&term=&cntry=&state=&city=&dist=
[38] 
Kang M., Min K., Jang J. et al.: Involvement of immune responses in the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev 2015; 24: 2259–2268.
[39] 
Chen L., Huang H., Xi H., et al.: Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: A randomized controlled clinical trial. Cell Transplant 2010; 19: 185–191.
[40] 
Chen G., Wang Y., Xu Z., et al.: Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med 2013; 11: 21–32.
[41] 
Luan Z., Liu W., Qu S., et al.: Effects of Neural Progenitor Cell transplantation in Children With Severe Cerebral Palsy. Cell Transplant 2012; 21: 91–98.
[42] 
Ashrafi F., Zali A-R., Pakdaman H., et al.: A Review on Stem Cell Therapy in Cerebral Palsy with a Focus on Motor Function Improvement. Arch Neurosci 2018; 5:e59387.
[43] 
Wang X., Cheng H., Hua R., et al.: Effects of bone marrow mesenchymal stromal cells on gross motor function measure scores of children with cerebral palsy: a preliminary clinical study. Cytotherapy 2013; 15: 1549– 1562.
[44] 
Mancias-Guerra C., Marroquin-Escamilla A.R., Gonzalez-Llano O., et al.: Safety and tolerability of intrathecal delivery of autologous bone marrow nucleated cells in children with cerebral palsy: an open-label phase I trial. Cytotherapy 2014; 16: 810–820.
[45] 
Zali A., Arab L., Ashrafi F., et al. Intrathecal injection of CD133-positive enriched bone marrow progenitor cells in children with cerebral palsy: feasibility and safety. Cytotherapy 2015; 17: 232–241.
[46] 
Huang L., Zhang Ch., Gu J., et al.: A Randomized, Placebo-Controlled Trial of Human Umbilical Cord Blood Mesenchymal Stem Cell Infusion for Children With Cerebral Palsy. Cell Transplant 2018; 27: 325–334.
[47] 
Sun J.M., Song A.W., Case L.E., et al.: Effect of Autologous Cord Blood Infusion on Motor Function and Brain Connectivity in Young Children with Cerebral Palsy: A Randomized, Placebo-Controlled Trial. Stem Cells Transl Med 2017; 6: 2071–2078.
[48] 
Nguyen T.L., Nguyen H.P., Nguyen T.K.: The effects of bone marrow mononuclear cell transplantation on the quality of life of children with cerebral palsy. Health Qual Life Outcomes 2018; 16: 164.
[49] 
Drobyshevsky A., Cotten C.M., Shi Z., et al.: Human umbilical cord blood cells ameliorate motor deficits in rabbits in a cerebral palsy model. Dev Neurosci 2015; 37: 349–362.
[50] 
Kean T.J., Lin P., Caplan A.I., et al.: MSCs: delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013; 2013: Article ID 732742,
[51] 
Anjos-Afonso F., Siapati E.K., Bonnet D.: In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions. J Cell Sci 2004; 117: 5655–5664.
[52] 
Lee R.H., Seo M.J., Pulin A.A., et al.: The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood 2009; 113: 816–826.
[53] 
Aridas J.D., McDonald C.A., Paton M.C., et al.: Cord blood mononuclear cells prevent neuronal apoptosis in response to perinatal asphyxia in the newborn lamb. J Physiol 2016; 594: 1421–1435.
[54] 
Cotten C.M., Murtha A.P., Goldberg R.N., et al.: Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr 2014; 164: 973-979. Adres do korespondencji: Barbara Krukowska-Andrzejczyk Oddział Pediatrii i Neurologii Wieku Rozwojowego, SPSK Nr 6 Śląskiego Uniwersytetu Medycznego Górnośląskie Centrum Zdrowia Dziecka im. Jana Pawła II, basiakruan@gmail.com
[55] 
Romanov Y.A., Tarakanov O.P., Radaev S.M. et al.: Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 2015; 17: 969–978.
[56] 
Kiasatdolatabadi A., Lotfibakhshaiesh N., Yazdankhah M., et al.: The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol. Neurobiol 2017; 54: 4963-4972.
[57] 
Kurtzberg J., et al. A Study of UCB and MSCs in Children With CP: ACCeNT-CP. Address: https://clinicaltrials.gov/ct2/show/NCT03473301
[58] 
Liu J.: Transplantation of Umbilical Cord-derived Mesenchymal Stem Cells Via Different Routes. Address: https://clinicaltrials.gov/ct2/show/ NCT03414697
[59] 
Harris D.T.: Non-haematological uses of cord blood stem cells. Br J Haematol 2009; 147: 177–184.
[60] 
Rudnicki J., Kawa M. P., Kotowski M., et al.: Clinical evaluation of the safety and feasibility of whole autologous cord blood transplant as a source of stem and progenitor cells for extremely premature neonates: preliminary report. Exp. Clin. Transplant 2015; 13: 563–572.
[61] 
Ahn S. Y., Chang Y. S., Sung S. I., et al.: Mesenchymal stem cells for severe intraventricular hemorrhage in preterm infants: phase i doseescalation clinical trial. Stem Cells Transl Med 2018; 7: 847–856.
[62] 
Won-Soon Park et al.: Efficacy and Safety Evaluation of Pneumostem® Versus a Control Group for Treatment of IVH in Premature Infants (Phase 2a) Address: https://clinicaltrials.gov/ct2/show/NCT02890953
Powrót
 

Najczęsciej pobierane
Semiologiczna i psychiatryczna charakterystyka dzieci z psychogennymi napadami rzekomopadaczkowymi
Neurol Dziec 2018; 27, 55: 11-14
Autyzm dziecięcy – współczesne spojrzenie
Neurol Dziec 2010; 19, 38: 75-78
Obraz bólów głowy w literaturze pięknej i poezji na podstawie wybranych utworów
Neurol Dziec 2016; 25, 50: 9-17

Narzędzia artykułu
Manager cytowań
Format:

Scholar Google
Artykuły aut.:Krukowska-Andrzejczyk B
Artykuły aut.:Cebula A
Artykuły aut.:Głuszkiewicz E
Artykuły aut.:Kopyta I

PubMed
Artykuły aut.:Krukowska-Andrzejczyk B
Artykuły aut.:Cebula A
Artykuły aut.:Głuszkiewicz E
Artykuły aut.:Kopyta I


Copyright © 2017 by Polskie Towarzystwo Neurologów Dziecięcych