[1]
Steinborn B.: Neurologia wieku rozwojowego. PZWL, Warszawa 2017.
[2]
PTND pod redakcją Steinborn B.: Standardy postępowania diagnostyczno-
terapeutycznego w schorzeniach układu nerwowego u dzieci
i młodzieży. BiFolium, Lublin 2013.
[3]
Hallman-Cooper J.M., Scott C.D.: Cerebral Palsy. StatPearls Publishing;
2019. Address: https://www.ncbi.nlm.nih.gov/books/NBK538147/#article-
19188.s2.
[4]
Novak I., Walker K., Hunt R.W., et al.: Concise Review: Stem Cell
Interventions for People With Cerebral Palsy: Systematic Review With
Meta-Analysis. Stem Cells Transl Med 2016; 5: 1014–1025.
[5]
Rizk M., Aziz J., Shorr R., et al.: Cell-Based Therapy Using Umbilical
Cord Blood for Novel Indications in Regenerative Therapy and Immune
Modulation: An Update Systemic Scoping Review of the Literature. Biol
Blood Marrow Transpl 2017; 23: 1607–1613.
[6]
California Institute for Regenerative Medicine. Cerebral Palsy Workshop
2012 Address: http://www.cirm.ca.gov
[7]
Jantzie L.L., Scafidi J. and Robinson Sh.: Stem cells and cell-based
therapies for cerebral palsy: a call for rigor. Ped Res 2018; 83: 345–355.
[8]
McDonald C.A., Fahey M.C., Jenkin G., et al.: Umbilical cord blood cells
for treatment of cerebral palsy; timing and treatment options. Pediatr
Res 2018; 83: 333–344.
[9]
Zestawienie leczonych pacjentów. Polski Bank Komórek Macierzystych:
Address: https://www.pbkm.pl/o-komorkach-macierzystych/lista-przeszczepien-
pbkm
[10]
Mukai T., Tojo A., Nagamura-Inoue T.: Mesenchymal stromal cells as
potential therapeutic for neurological disorders. Regen Ther 2018; 9: 32–37.
[11]
Dominici M., Le Blanc K., Mueller I., et al.: Minimal criteria for defining
multipotent mesenchymal stromal cells. The International Society for
Cellular Therapy position statement. Cytotherapy 2006; 8: 315–317.
[12]
Horwitz E.M., Le Blanc K., Dominici M., et al.: Clarification of the
nomenclature for MSC: the International Society for Cellular Therapy
position statement. Cytotherapy 2005; 7: 393–395.
[13]
Pojda Z., Machaj E., Kurzyk A., et al: Mezenchymalne komórki
macierzyste. Postępy Biochem 2013; 59: 187–197.
[14]
Jiao Y., Li X., Liu J.: A New Approach to Cerebral Palsy Treatment:
Discussion of the Effective Components of Umbilical Cord Blood and its
Mechanisms of Action. Cell Transplant 2019; 28: 497–509.
[15]
Park D.H., Lee J.H., Borlongan C.V., et al.: Transplantation of umbilical
cord blood stem cells for treating spinal cord injury. Stem Cell Rev 2011;
7: 181–194.
[16]
Park D.H., Borlongan C.V., Willing A.E., et al.: Human umbilical cord
blood cell grafts for brain ischemia. Cell Transplant 2009; 18: 985–998.
[17]
Kalaszczynska I., Ferdyn K.: Wharton’s Jelly Derived Mesenchymal Stem
Cells: Future of RegenerativeMedicine? Recent Findings and Clinical
Significance. Biomed Res Int 2015; Article ID 430847.
[18]
Chen J., Sanberg P.R., Li Y., et al.: Intravenous administration of human
umbilical cord blood reduces behavioral deficits after stroke in rats.
Stroke 2001; 32: 2682–2688.
[19]
Lu D., Sanberg P.R., Mahmood A., et al.: Intravenous administration of
human umbilical cord blood reduces neurological deficit in the rat after
traumatic brain injury. Cell Transplant 2002; 11: 275–281.
[20]
Hall A.A., Guyer A.G., Leonardo C.C., et al.: Human umbilical cord blood
cells directly suppress ischemic oligodendrocyte cell death. J Neurosci
Res 2009; 87: 333–341.
[21]
Li J., McDonald C.A., Fahey M.C., et al.: Could cord blood cell therapy
reduce preterm brain injury? Front Neurol 2014; 5: Article 200.
[22]
Geissler M., Dinse H.R., Neuhoff S., et al.: Human umbilical cord blood
cells restore brain damage induced changes in rat somatosensory
cortex. PLoS ONE 2011; 6:e20194.
[23]
Meier C., Middelanis J., Wasielewski B., et al.: Spastic paresis
after perinatal brain damage in rats is reduced by human cord blood
mononuclear cells. Pediatr Res 2006; 59: 244–249.
[24]
Pimentel-Coelho P.M., Magalhaes E.S., Lopes L.M., et al.: Human cord
blood transplantation in a neonatal rat model of hypoxic-ischemic brain
damage: functional outcome related to neuroprotection in the striatum.
Stem Cells Dev 2010; 19: 351–358.
[25]
Park W.S., Sung S.I., Ahn S.Y., et al.: Hypothermia augments
neuroprotective activity of mesenchymal stem cells for neonatal
hypoxic-ischemic encephalopathy. PLoS ONE 2015;10:e0120893.
[26]
Kim D.K., Nishida H., An S.Y., et al.: Chromatographically isolated
CD63+CD81+ extracellular vesicles from mesenchymal stromal cells
rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 2016;
113: 170–175.
[27]
Bae S.H., Kong T.H., Lee H.S., et al.: Long-lasting paracrine effects of
human cord blood cells on damaged neocortex in an animal model of
cerebral palsy. Cell Transplant 2012; 21: 2497–2515.
[28]
Min K., Song J., Kang J.Y., et al.: Umbilical cord blood therapy potentiated
with erythropoietin for children with cerebral palsy: a double-blind,
randomized, placebo-controlled trial. Stem Cells 2013; 31: 581–591.
[29]
Bae S.H., Lee H.S., Kang M.S., et al.: The levels of pro-inflammatory factors
are significantly decreased in cerebral palsy patients following an allogeneic
umbilical cord blood cell transplant. Int J Stem Cells 2012; 5: 31–38.
[30]
Lin M.N., Shang D.S., Sun W., et al.: Involvement of PI3K and ROCK
signaling pathways in migration of bone marrow-derived mesenchymal
stem cells through human brain microvascular endothelial cell monolayers.
Brain Res 2013; 1513: 1–8.
[31]
Matsushita T., Kibayashi T., Katayama T., et al.: Mesenchymal stem cells
transmigrate across brain microvascular endothelial cell monolayers
through transiently formed inter-endothelial gaps. Neurosci Lett 2011;
502: 41–45.
[32]
Liu L., Eckert M.A., Riazifar H., et al.: From blood to the brain: can
systemically transplanted mesenchymal stem cells cross the bloodbrain
barrier? Stem Cells Int 2013; 2013: 435093.
[33]
Chen A., Siow B., Blamire A.M., et al.: Transplantation of magnetically
labeled mesenchymal stem cells in a model of perinatal brain injury.
Stem Cell Res 2010; 5: 255–266.
[34]
Papadopoulos K.I., Low S.S., Aw T.C., et al.: Safety and feasibility of
autologous umbilical cord blood transfusion in 2 toddlers with cerebral
palsy and the role of low dose granulocyte-colony stimulating factor
injections. Restor Neurol Neurosci 2011; 29: 17–22.
[35]
Paton M.C.B., Allison B.J., Li J., et al: Human Umbilical Cord Blood
Therapy Protects Cerebral White Matter from Systemic LPS Exposure in
Preterm Fetal Sheep. Dev Neurosci 2018; 40: 258–270.
[36]
Beldick S.R., Hong J., Altamentova S., et al.: Severe-combined
immunodeficient rats can be used to generate a model of perinatal
hypoxic-ischemic brain injury to facilitate studies of engrafted human
neural stem cells. PLoS One 2018; 13: 1–22.
[37]
Search results for: cerebral palsy, stem cells, ClinicalTrials.gov
Address:https://clinicaltrials.gov/ct2/esults?cond=cerebral+palsy+st
em+cell&term=&cntry=&state=&city=&dist=
[38]
Kang M., Min K., Jang J. et al.: Involvement of immune responses in
the efficacy of cord blood cell therapy for cerebral palsy. Stem Cells Dev
2015; 24: 2259–2268.
[39]
Chen L., Huang H., Xi H., et al.: Intracranial transplant of olfactory
ensheathing cells in children and adolescents with cerebral palsy:
A randomized controlled clinical trial. Cell Transplant 2010; 19: 185–191.
[40]
Chen G., Wang Y., Xu Z., et al.: Neural stem cell-like cells derived from
autologous bone mesenchymal stem cells for the treatment of patients
with cerebral palsy. J Transl Med 2013; 11: 21–32.
[41]
Luan Z., Liu W., Qu S., et al.: Effects of Neural Progenitor Cell
transplantation in Children With Severe Cerebral Palsy. Cell Transplant
2012; 21: 91–98.
[42]
Ashrafi F., Zali A-R., Pakdaman H., et al.: A Review on Stem Cell Therapy
in Cerebral Palsy with a Focus on Motor Function Improvement. Arch
Neurosci 2018; 5:e59387.
[43]
Wang X., Cheng H., Hua R., et al.: Effects of bone marrow mesenchymal
stromal cells on gross motor function measure scores of children with
cerebral palsy: a preliminary clinical study. Cytotherapy 2013; 15: 1549–
1562.
[44]
Mancias-Guerra C., Marroquin-Escamilla A.R., Gonzalez-Llano O., et al.:
Safety and tolerability of intrathecal delivery of autologous bone marrow
nucleated cells in children with cerebral palsy: an open-label phase I trial.
Cytotherapy 2014; 16: 810–820.
[45]
Zali A., Arab L., Ashrafi F., et al. Intrathecal injection of CD133-positive
enriched bone marrow progenitor cells in children with cerebral palsy:
feasibility and safety. Cytotherapy 2015; 17: 232–241.
[46]
Huang L., Zhang Ch., Gu J., et al.: A Randomized, Placebo-Controlled
Trial of Human Umbilical Cord Blood Mesenchymal Stem Cell Infusion for
Children With Cerebral Palsy. Cell Transplant 2018; 27: 325–334.
[47]
Sun J.M., Song A.W., Case L.E., et al.: Effect of Autologous Cord Blood
Infusion on Motor Function and Brain Connectivity in Young Children with Cerebral Palsy: A Randomized, Placebo-Controlled Trial. Stem Cells
Transl Med 2017; 6: 2071–2078.
[48]
Nguyen T.L., Nguyen H.P., Nguyen T.K.: The effects of bone marrow
mononuclear cell transplantation on the quality of life of children with
cerebral palsy. Health Qual Life Outcomes 2018; 16: 164.
[49]
Drobyshevsky A., Cotten C.M., Shi Z., et al.: Human umbilical cord blood
cells ameliorate motor deficits in rabbits in a cerebral palsy model. Dev
Neurosci 2015; 37: 349–362.
[50]
Kean T.J., Lin P., Caplan A.I., et al.: MSCs: delivery routes and
engraftment, cell-targeting strategies, and immune modulation. Stem
Cells Int 2013; 2013: Article ID 732742,
[51]
Anjos-Afonso F., Siapati E.K., Bonnet D.: In vivo contribution of murine
mesenchymal stem cells into multiple cell-types under minimal damage
conditions. J Cell Sci 2004; 117: 5655–5664.
[52]
Lee R.H., Seo M.J., Pulin A.A., et al.: The CD34-like protein PODXL and
alpha6-integrin (CD49f) identify early progenitor MSCs with increased
clonogenicity and migration to infarcted heart in mice. Blood 2009; 113:
816–826.
[53]
Aridas J.D., McDonald C.A., Paton M.C., et al.: Cord blood mononuclear
cells prevent neuronal apoptosis in response to perinatal asphyxia in the
newborn lamb. J Physiol 2016; 594: 1421–1435.
[54]
Cotten C.M., Murtha A.P., Goldberg R.N., et al.: Feasibility of autologous
cord blood cells for infants with hypoxic-ischemic encephalopathy. J
Pediatr 2014; 164: 973-979.
Adres do korespondencji:
Barbara Krukowska-Andrzejczyk Oddział Pediatrii i Neurologii Wieku Rozwojowego, SPSK Nr 6 Śląskiego Uniwersytetu Medycznego Górnośląskie Centrum
Zdrowia Dziecka im. Jana Pawła II, basiakruan@gmail.com
[55]
Romanov Y.A., Tarakanov O.P., Radaev S.M. et al.: Human allogeneic
AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile
patients with cerebral palsy. Cytotherapy 2015; 17: 969–978.
[56]
Kiasatdolatabadi A., Lotfibakhshaiesh N., Yazdankhah M., et al.: The
Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol.
Neurobiol 2017; 54: 4963-4972.
[57]
Kurtzberg J., et al. A Study of UCB and MSCs in Children With CP:
ACCeNT-CP. Address: https://clinicaltrials.gov/ct2/show/NCT03473301
[58]
Liu J.: Transplantation of Umbilical Cord-derived Mesenchymal Stem
Cells Via Different Routes. Address: https://clinicaltrials.gov/ct2/show/
NCT03414697
[59]
Harris D.T.: Non-haematological uses of cord blood stem cells. Br J
Haematol 2009; 147: 177–184.
[60]
Rudnicki J., Kawa M. P., Kotowski M., et al.: Clinical evaluation of the
safety and feasibility of whole autologous cord blood transplant as
a source of stem and progenitor cells for extremely premature neonates:
preliminary report. Exp. Clin. Transplant 2015; 13: 563–572.
[61]
Ahn S. Y., Chang Y. S., Sung S. I., et al.: Mesenchymal stem cells for
severe intraventricular hemorrhage in preterm infants: phase i doseescalation
clinical trial. Stem Cells Transl Med 2018; 7: 847–856.
[62]
Won-Soon Park et al.: Efficacy and Safety Evaluation of Pneumostem®
Versus a Control Group for Treatment of IVH in Premature Infants (Phase 2a)
Address: https://clinicaltrials.gov/ct2/show/NCT02890953